

GENERAL NOTES

- (A) FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" 1994.
- (B) PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM THE ABOVE REFERENCE.
- © REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE".
- 0 MINIMUM RIGHT-OF-WAY IS THAT REQUIRED TO ACCOMMODATE SLOPES AND UTILITIES (4.5 m TO 6.0 m OUTSIDE THE SLOPE LINES IS DESIRABLE IN RURAL AREAS).
- (E) ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR MS-18 LOADING.
 THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL
 TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER
 WIDTH AS APPLICABLE.
- (F) BRIDGES TO REMAIN IN PLACE SHOULD HAVE ADEQUATE STRENGTH AND AT LEAST THE WIDTH OF THE TRAVELED WAY PLUS 0.6 m CLEARANCE ON EACH SIDE, BUT SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 1.0 m CLEARANCE ON EACH SIDE OR ARE NOT CAPABLE OF MS-18 LOADINGS. AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENT SUCH AS SIGNING AND PAVEMENT MARKING.

9 DESIGN SPEED	(km/h)		
LEVEL TOPO	110		
ROLLING TOPO	100		
MOUNTAINOUS TOPO	80		

DETAIL C

DETAIL D

SUBGRADE

NO ROUNDING REQUIRED

DESIGN STANDARDS		DESIGN SPEEDS (km/h)								
(FOR GIVEN DESIGN SPEED)			50	60	70	80	90	100	110	120
MINIMUM RADIUS (m) 4.0 % MAX. S.E.			100	150	215	280	375	490	635	870
MINIMUM RADIUS (m) 6.0 % MAX. S.E.			90	135	195	250	335	435	560	755
MINIMUM RADIUS (m) 8.0 % MAX. S.E.		80	125	175	230	305	395	500	655	
MINIMUM RADIUS (m) 10.0 % MAX. S.E.		75	115	160	210	275	360	455	595	
MAXIMUM RURAL GRADES (%) (PAGE 486,TABLE VII-1)		LEVEL TOPO	-	5	5	4	4	3	3	3
		ROLLING TOPO	-	6	6	5	5	4	4	4
	I-1)	MOUNTAINOUS TOPO	-	8	7	7	6	6	5	5
MAXIMUM URBAN GRADES (%) (PAGE 514, TABLE VII-4)		LEVEL TOPO	8	7	6	6	5	5	-	-
		ROLLING TOPO	9	8	7	7	6	6	-	-
		MOUNTAINOUS TOPO	11	10	9	9	8	8	-	-
MINIMUM STOPPING SIGHT DISTANCE (m)		57.4-62.8	74.3-84.6	94.1-110.8	112.8-139.4	131.2-168.7	157.0-205.0	179.5-246.4	202.9-285.6	
MINIMUM "K"	CREST VERTICAL CURVE		9-10	14-18	22-31	32-49	43-71	62-105	80-151	-
	SAG VERTICAL CURVE		11-12	15-18	20-25	25-32	30-40	37-51	43-62	-
SUPERELEVATION			SEE STANDARD DRAWINGS RDM-SE-2 & RDM-SE-3							

SPECIAL NOTE

THIS DRAWING IS NOT TO BE UTILIZED FOR NEW DESIGN PROJECTS BEGUN AFTER OCTOBER 1, 2002.

FOOTNOTES

- SEE GUARDRAIL STANDARD DRAWINGS FOR TYPICAL GUARDRAIL PLACEMENT.
- (2) SEE DETAIL A, B, C, OR D ON THIS SHEET FOR ROUNDING.
- 3 CLEAR ZONE WIDTH SHALL BE DETERMINED FROM STANDARD DRAWING RDM-S-11. FOR URBAN DESIGN SEE PAGE 525.
- (4) SEE STANDARD DRAWING RDM-S-11 FOR FILL AND CUT SLOPE TABLES, ROUNDING ON TOP OF CUT SLOPES AND TOE OF FILL SLOPES, AND SPECIAL ROCK CUT TREATMENT.
- (5) SEE STANDARD DRAWING RDM-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- 6 THE SLOPES OF THE SHOULDER AND ROADWAY PAVEMENT SHALL NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7.0 %.
- (7) "K" VALUE IS A COEFFICIENT BY WHICH THE ALGEBRAIC DIFFERENCE IN GRADE MAY BE MULTIPLIED TO DETERMINED THE LENGTH IN METERS OF THE VERTICAL CURVE.
- ANY LENGTH OF STOPPING SIGHT DISTANCE WITHIN THE RANGE OF VALUES ESTABLISHED ON PAGE 490, TABLE VII-3 IS ACCEPTABLE FOR A SPECIFIC SPEED. HOWEVER, VALUES APPROACHING OR EXCEEDING THE UPPER LIMIT OF THE RANGE SHOULD BE USED AS THE BASIS FOR DESIGN WHEREVER CONDITIONS PERMIT.
- (9) RURAL ONLY SEE PAGE 484. FOR URBAN DESIGN SEE PAGE 513.

ALL UNITS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.

MINOR REVISION -- FHWA APPROVAL NOT REQUIRED.

STATE OF TENNESSEE
DEPARTMENT OF TRANSPORTATION

DESIGN STANDARDS 4-6 LANE ARTERIAL HIGHWAYS WITH FLUSH MEDIANS 11-1-95 RDM-TS-3C